DEVELOPMENTAL TESTBED CENTER (DTC)

Zoltan Toth¹

Jamie Wolff², Ligia Bernardet³, Hui Shao², Isidora Jankov⁴, Tressa Fowler²

Global Systems Division (GSD) NOAA/OAR/ESRL
 NCAR, ³ CIRES at GSD, ⁴ CIRA at GSD

Acknowledgements:

Bill Kuo, Louisa Nance, Barbara Brown, Kevin Kelleher

5th NOAA Testbed Workshop, April 16-18, 2014

Developmental Testbed Center

OUTLINE / SUMMARY

Where DTC has been

- Operations to Research (O2R) in Numerical Weather Prediction
 - Code repositories, helpdesks, tutorials, etc

AOP-13 Highlights

- Mesoscale modeling, Hurricane modeling, Data Assimilation, Ensemble forecasting, Verification
 - Testing & Evaluation of baseline & other methodologies, Visitor Program

Future Directions

- Discussions on scope of DTC
 - Improve current & next generation NWP systems
 - New Cooperative Agreement
- Build modern NWP IT Environment (NITE)
- Strengthen collaboration with other NOAA testbeds & programs

OVERVIEW

Interagency collaboration

- To accelerate NWP Research to Operations (R2O) transition
- NOAA (OAR, NWS-HFIP), AFWA, NCAR (RAL)
- O2R Major accomplishments
 - Code repositories
 - WRF, GSI, HWRF, MET for community use; SREF for internal T&E
 - Helpdesks, workshops, tutorials, etc
 - Testing environment functionally similar to EMC's
- R20 Significant T&E work
 - Reference configurations
 - Improvements to operational systems
 - Other experiments informing decisions regarding operational systems
 - Visitor Program

Mesoscale Modeling Task

Jamie Wolff et al.

Version T&E Results

WRFv3.4

WRFv3.4.1

WRFv3.5

Version Testing and Evaluation (T&E)

- Developmental Testbed Center (DTC) testing philosophy:
 - Conduct comprehensive testing and evaluation, including extensive objective verification
 - Provide a neutral and unbiased assessment
- WRF version testing:
 - Continually evolving code base
 - Prior to a release, WRF code run through large number of regression tests; however, extensive testing to evaluate forecast skill is not widely addressed
 - Modifications to address a specific issue may impact other aspects
- Is WRF improving? neutral? degrading? → Hard question to answer!
 - Highly configurable, many options depends on the user's needs

Version Testing and Evaluation (T&E)

- End-to-end system: WPS, WRF, UPP, and MET
- Simulations: 48-h cold start forecasts every 36 h (3mo warm and cold season)
- AFWA Operational Configuration Physics Suite: 50%

Microphysics	WSM6
Radiation	Dudhia/RRTM
Surface Layer	M-O similarity
LSM	Noah
PBL	YSU
Convection	Kain-Fritsch

- Surface and Upper-air BCRMSE, Bias
 - Temperature, Dew Point Temperature, Winds
- Pair-wise differences (v3.4-v3.4.1, v3.4.1-v3.5, v3.4-v3.5)
- Statistical/Practical Significance

CONUS Sfc Temp Bias - Time Series 00 UTC Initializations

Larger warm bias

Larger cold bias

Winter

WRFv3.4 WRFv3.4.1 WRFv3.5

Lead Time	f03	f06	f09	f12	f15	f18	f21	f24	f27	f30	f33	f36	f39	f42	f45	f48

Summer	v3.4 *	v3.4 *	v3.4 *	v3.4 *	v3.5	v3.5 *	v3.5 *	v3.4 *	v3.5 *	v3.5 *	v3.5 *					
Winter	v3.4 *	v3.4 *	v3.4 *	v3.5 *	v3.4 *			v3.4 *	v3.4 *	v3.4 *	v3.4 *	v3.5 *	v3.4 *			v3.4 *

Sfc Temp Bias - By Observation Station 00 UTC Initializations; Lead Time=36h (Valid 12 UTC)

v3.4

Config=AFWAOC_WRFv3.4 Season=SUMMER Init=00UTC Fcst Hr=36h

Config=AFWAOC_WRFv3.4 Season=WINTER Init=00UTC Fcst Hr=36h

Config=AFWAOC_WRFv3.5 Season=SUMMER Init=00UTC Fcst Hr=36h

Config=AFWAOC_WRFv3.5 Season=WINTER Init=00UTC Fcst Hr=36h

DTC Hurricane Task

Ligia Bernardet

C. Holt, T. Brown, M. Biswas, D. Stark, L. Carson, T. Galarneau, X. Fang

External collaborators:

NOAA's Environmental Modeling Center
NOAA's Atlantic Oceanographic and Meteorological Laboratory
NOAA's Geophysical Fluid Dynamics Laboratory
NOAA's Earth System Research Laboratory
NCAR's Mesoscale and Microscale Meteorology Division
University of Rhode Island

Developmental Testbed Center-

Highlight

Diagnostic of GFS 5-day track errors

NCEP vs ECMWF track verification

LANT GFS v ECMWF %improve over HFIP baseline d+7 track error HFIP year 4 2012

- GFS better than ECMWF up to 2 days.
- GFS errors larger than ECMWF in days 6-7

GFS 500-hPa height: 90-day mean

Pattern deamplifies with increasing forecast lead time – Physics problem?

GFS wind 92-day mean: 1 Aug-31 Oct 2012

Case Study: Isaac Trough Fracture due to PRE convection

(missed by GFS)

- Convective outbreak over Florida creates divergence that fractures (splits) trough
- Split in trough allows Isaac to move westward
- This process not captured by GFS

Black contours: 300–200 mb layer-mean PV (PVU)

Green contours: 600-400 mb (1 Ub/s) layer-mean omega Vectors: 300-200 hPa layer-mean irrotational wind (V_{ir}) (m/s)

Shading: 300–200 hPa layer-mean PV advection by V_{ir} (PVU/d

DTC

Hybrid Data Assimilation for Hurricane Forecasting

Hui Shao et al.

Note Joint JCSDA/DTC GSI Tutorial and Workshop

Impacts of vortex initialization & standard DA

• For this case study (with TDR data and using HWRF ensemble), the vortex initialization counter-acts DA analysis increments in the inner domain.

Forecast verification

GLBL: GSI-hybrid used GFS ensemble for both outer (~27km) and inner DA domain (~3km). Conventional data and TDR (when available) were assimilated

RGNL: Similar to GLBL, except DA for inner DA domain used 9km HWRF ensemble.

RNVI: Similar to RGNL, except no vortex initialization prior to DA

Highlight from Ensemble Task

Isidora Jankov, Tara Jensen, Barbara Brown, Laurie Carson, Eugene Mirvis

Port & Test Field Alignment Technique -

In collaboration with Sai Ravela (MIT), supported by DTC Visitor Program

 Recommendation from 2nd Ensemble User Workshop

 Tested for separating amplitude & displacement components of forecast error

Code to be made available to the community

Potential use in ensemble forecasting, data assimilation, verification

Developmental Testbed Center

Field Alignment Technique Examples

Error decomposition, Hurricane Katia example, Sept. 6 2011, GEFS unperturbed member 12 hr Forecast, initialized at 00UTC

Field Alignment Technique Examples

Error decomposition with lead times for Sept 2011 GEFS unperturbed member forecasts

global domain

regional domain

ENSEMBLE FUNCTIONALITIES

List of centrally/locally/interactively generated products required by NCEP Service Centers for each functionality are provided in attached tables (eg., MSLP, Z,T,U,V,RH, etc, at 925,850,700,500, 400, 300, 250, 100, etc hPa)

	FUNCTIONALITY	CENTRALLY GENERATED	LOCALLY GENERATED	INTERACTIVE ACCESS
1	Mean of selected members Done			
2	Spread of selected members Done			
3	Median of selected values Done Sept. 2005	<u> </u>		
4	Lowest value in selected members Done Sept. 2005			
5	Highest value in selected members Done Sept. 2005	10010		
6	Range between lowest and highest values Done Sept. 2005			
7	Univariate exceedance probabilities for a selectable threshold value <i>Done</i> , <i>Dec 05</i>			
8	Multivariate (up to 5) exceedance probabilities for a selectable threshold value <i>Done</i> , <i>Dec 05</i>	·/ ₀		
9	Forecast value associated with selected univariate percentile value Done Sept. 2005		VO SO	
10	Tracking center of maxima or minima in a gridded field (eg – low pressure centers) Done Sept. 2005		1. 12	
11	Objective grouping of members TBS for AWIPS2			<u> </u>
12	Plot Frequency / Fitted probability density function at selected location/time (lower priority) Basic function done; Interactive version to be scheduled for AWIPS2 (TBS)			10
13	Plot Frequency / Fitted probability density as a function of forecast lead time, at selected location (lower priority) Basic function done; Interactive version TBS		•	
14	Spaghetti (ability to interactively change contour/domain etc) Basic function done; Interactive version TBS			

Additional basic GUI functionalities:

- Ability to manually select/identify members *Done*
- Ability to weight selected members *Done, Sept. 05*

Potentially useful functionalities that need further development:

- Mean/Spread/Median/Ranges for amplitude of specific features (TBS)
- Mean/Spread/Median/Ranges for phase of specific features (TBS)

- New position at CIRA / GSD
 - Ensemble forecasting research, development, testing

CIRA position number 14-105

http://www.cira.colostate.edu/cira-employment

Verification – Model Evaluation Tools (MET)

Tressa Fowler et al.

MET v4.1 – Released May 2013

- Spread skill statistic in ensemble tool with plotting capability added to METViewer.
- Series analysis tool summarizes verification statistics in any series (e.g. time, height) at each grid point in domain.
- little_r and SURFRAD handled in preprocessing tools.
- MET –TC to support verification of tropical cyclone forecasts (supported by HFIP)

MET v4.2 - Release Imminent

- NetCDF CF support.
- Automatic configuration (autoconf) to eliminate user responsibility for adjusting code for different compilers.
- Smaller (approx 80% reduction) postscript image files produced by MODE and other tools.

MET v4.2 - Release Imminent

- Updated support for TRMM data.
- More contingency table statistics, including bias corrected ETS and extreme dependency scores.
- Enhancements to MET TC to support verification of tropical cyclone forecasts (supported by HFIP)

SURFRAD preprocessing and ability to summarize observations over time

HRRR vs. SURFRAD Irradiance – Observation Comparison

RECENT DEVELOPMENTS

INTERAGENCY COLLABORATION

Cooperative agreement

- NOAA's 5-yr agreement with NCAR expired Aug 2013
- Continued engagement with NCAR
- Looking for new long term funding vehicle

DTC Charter

- Signed by NWS, OAR, AFWA, NCAR in 2009
- Up for possible revisions in Sept 2014
- DTC MB will make recommendations
 - Need to clarify terms of interagency operations

ROLES & RESPONSIBILITIES

DTC EC Meeting – Febr 2014

- Discussion and clarification of roles & responsibilities
 - DTC Director (Bill Kuo)
 - Coordinate planning, monitor progress
 - NCAR/RAL, GSD
 - Execution
- Clearly defined tasks with deliverables for RAL & GSD

NWS – OAR Discussions

- Role of two line offices in NOAA's DTC efforts
- NOAA's role in interagency DTC
- NOAA's priorities
 - R2O areas
 - Ways to best engage community

POSSIBLE FUTURE DIRECTIONS -

PERSONAL PERSPECTIVES

TIME SCALE OF TRANSITION

~1 year – Next NCEP Implementation

- Clearly connected to NCEP AOP
- Modest impact most work done earlier
- Hard to engage with hectic EMC activities prior to implementation
- Primary role of EMC

2-3 years – Evolution of current system

- Moderate risk of no direct contribution to operations
- Potential for larger impact
- Good practices needed for DTC EMC interactions
- EMC needs support

3-5+ yrs – Next generation system

- Higher risk High level of NWP expertise needed
- Highest potential for impact
- Good partnership with EMC is critical
- Clear role for OAR

ROLES IN R20 TRANSITION IN NOAA

ROLES OF NWS & OAR

NWS – EMC

- Lead O2R
- Lead short term R2O
- Provide expected operational requirements & constraints

OAR - GSD

- Lead long term R2O
- Engage with diverse research community
- Build prototypes of next generation systems
- Orchestrate seamless handoff to operations

CURRENT OPERATIONAL SYSTEMS

NEXT GENERATION SYSTEMS

Driven by Research

OUTREACH TO ACADEMIC COMMUNITY

Create open Working Groups

- Follow JCSDA example
- Invite all parties doing related work, irrespective of funding source

Canvass NSF grantees

- Support selected scientists' related R2O work
- NOAA R2O AO?
 - Leverage huge government investment

Provide advanced NWP Information Technology Environment (NITE)

- Shaped after ECMWF's example
- Interconnected database, DA/model launcher, display, verification, etc tools
- Same system used by EMC, DTC/OAR, external contributors
- Significant upfront investment Big gain later
 - The later done, the more expensive it will be
- Feasibility study by DTC in AOP14

DTC & OTHER TESTBEDS

- Application oriented testbeds HMT, HWT, JHT, AWT, CTB
 - NWP related testing
 - DTC to provide support
 - Testbeds to take part in evaluation

NWP-related testbed - JCSDA

- Overlap in data assimilation
 - JCSDA Use of satellite DA
 - DTC DA methodologies
- Join forces for pulling in new technology
 - Build & share object oriented DA repository
 - Will allow plug & play software intercompatibility
- Clarify areas of primary interest
 - For more efficient outreach

FUTURE SCOPE

DTC must focus on

- Gaps in R2O, not covered by other programs
- Cutting edge development areas
- Limited resources must be selective

Shift focus onto global forecasting?

- Apply mesoscale experience with Limited Area Forecasting (LAF) to global forecasting
- Leverage DTC tools (testing, verification, DA, physics, ensemble, etc methods)
- Overlap with other projects (OAR Sandy Supplemental & NWS R2O projects)

Keep focus on Limited Area Forecasting?

- Build on past experience in DTC
- Narrow focus onto Warn-On-Forecast (WOF)
 - Mesoscale covered by today's/tomorrow's global forecast systems

OUTLINE / SUMMARY

Where DTC has been

- Operations to Research (O2R) in Numerical Weather Prediction
 - Code repositories, helpdesks, tutorials, etc

AOP-13 Highlights

- Mesoscale modeling, Hurricane modeling, Data Assimilation, Ensemble forecasting, Verification
 - Testing & Evaluation of baseline & other methodologies

Future Directions

- Discussions on scope of DTC
 - Improve current & next generation NWP systems
 - New Cooperative Agreement
- Build modern NWP IT Environment (NITE)
- Strengthen collaboration with other NOAA testbeds & programs

Applying the "Funnel" to the Transition Process

User Community

After A. MacDonald & L. Uccellini

ROLES - NEXT GENERATION SYSTEMS

Driven by Research

ACADEMIC COMMUNITY

 Develop new methods applicable in operations

CRITERIA

- Serves user needs
- Scientific soundness
- Quality of results
- Computational efficiency
- Ease of implementation & maintenance

OAR / DTC

- Bridge academia & operations
- Identify promising techniques w. community
- Assemble prototype systems w. community
- Evaluate prototypes w. EMC using criteria

OPERATIONS

- Advise on future user needs
- Advise on implementation/maintenance needs
- Pre-implementation testing

History

Initiated in 2004; NOAA funding increases in 2009 & 2010

Organization

- Interagency level Charter Bill Kuo, Director
 - NOAA, NSF, NCAR, USAF
- NOAA level
 - OAR-GSD, HFIP, USWRP, with EMC support

Staffing

- NCAR/RAL Under NOAA Cooperative Agreement
- ESRL/GSD

NOAA Cooperative Agreement

- Present NCAR, 2008-2013
- Next phase 2014-2019
 - Announcement of Opportunity being prepared
 - Competitive process
- Opportunity for NOAA to take stock and make adjustments if necessary

OVERVIEW

Objective

Accelerate NWP Research to Operations (R2O) transition

Approach

- O2R
 - Make operational NWP systems available to research community
 - Code repositories, helpdesk, tutorials, etc
- Test and Evaluation (T&E) of emerging research innovations
- Engage community
 - · Workshops, Visitor Program, etc

Task areas

- Mesoscale modeling (WRF ARW, NMMe, NMMb)
- Data assimilation (GSI)
- Hurricane forecasting (HWRF)
- Ensemble forecasting (SREF)
- Verification (MET)

Links with other NOAA Testbeds & programs

- HMT, HWT, HFIP